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45.1 Introduction
Segmentation is considered as an essential step in image processing. This process divides different parts of the image into
several categories. Multi-level Thresholding is a method that facilitates this process. The problem is to correctly segment
each image to find the best set of thresholds [1]. Thresholding usually uses image processing methods due to its consistency
and low Computational Complexity (CC). Two main methods are Otsu’s method [2–4] and Kapur’s method [5,6]. However,
such approaches have high CC for Multi-level Thresholding [7]. Thresholds help each other to separate interesting objects
from their background. The higher splitting quality depends on the selected thresholds [8]. Recently, Meta-Heuristic (MH)
algorithms like Particle Swarm Optimization (PSO) [9], Whale Optimization Algorithm (WOA) [10], Moth-Flame Opti-
mization (MFO) [11] have been successfully applied for Thresholding problems [3,8,12], and ABC [13,14] and, Harris
Hawks Optimizer (HHO) [15] are used in other problems.

MH algorithms have attracted the attention of researchers due to their excellent performance in finding threshold vec-
tors in Multi-level Thresholding Image Segmentation (MTIS) systems. MH algorithms are either used separately in these
problems, or been used in a combined version to solve the MTIS. Most MH algorithms are population-based and initially
find a plausible answer by randomly moving through the search space. Such algorithms also include two phases of explo-
ration and exploitation to search for the desired solution on the search space, through which the two phases search globally
and locally, respectively. Therefore, several attempts have been made in the literature to achieve a better balance between
exploration and exploitation phases to ensure maximum performance on a given optimization problem. In this chapter, our
contribution is the design and implementation of an MTIS system using a combination of WOA, MFO, and the Inverse
Otsu (IO) Function. This modification is developed using the operators of the MFO algorithm in an attempt to enhance the
exploitation phase of WOA during the process of finding the optimal solution for a given optimization problem. It is used
to increase the system’s performance so that the combined MFWOA algorithm performs better than WOA and MFO and
provides better solutions. Therefore, the optimal exploration and exploitation properties of MFO and WOA are used in the
search space to find the best thresholds. The rest of our chapter is organized as follows: Section 45.2 presents an overview of
related work. In Section 45.3, we describe the prerequisites used in the proposed method. Section 45.4 offers the proposed
method. Section 45.5 describes the performance analysis and test results. Finally, Section 45.6 presents the conclusions.

45.2 Related work
The works that have been done so far in the field of MTIS using MH algorithms are single MH and Hybrid MH, which are
briefly described in the following.

Handbook of Whale Optimization Algorithm. https://doi.org/10.1016/B978-0-32-395365-8.00051-8
Copyright © 2024 Elsevier Inc. All rights reserved, including those for text and data mining, AI training, and similar technologies. 625
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45.2.1 Image segmentation using single meta-heuristics

This section briefly reviews the latest related work on image segmentation. Rodríguez-Esparza et al. proposed the HHO-
based solver for image segmentation based on K-means and the Fuzzy IterAg machine learning algorithms [16]. The
experimental results show that the proposed method improves accuracy, consistency, and quality compared to the other
methods. Anitha et al. [17] presented a Modified WOA (MWOA) to optimize the Multi-level color image Thresholding.
The experiments show that the proposed method using MWOA performs better with less CPU computing time, image
quality, and feature protection than other state-of-the-art algorithms. Abd El Aziz et al. [3] tested the ability of each of the
WOA and MFO algorithms separately. During the optimization, they used Otsu’s Fitness Function. Their proposed method
was performed on different benchmark images compared with five algorithms. Also, the proposed method is provided a
good balance between exploration and exploitation and works better than other algorithms.

Doun et al. [18] provided an Improved Cuckoo Search (ICS) for the optimal Multi-level Thresholding. Two modifica-
tions were used to improve the cuckoo search algorithm. In the experiments, six benchmark test images and a series of
measures were performed, including Fitness Function value and standard deviation, Peak Signal to Noise Ratio (PSNR),
FSIM, and Structure Similarity Index (SSIM). The result shows that the ICS algorithm is superior to other MH algorithms.
Salehnia et al. [19] performed three MFO, WOA, and Grasshopper Optimization Algorithm (GOA) for utilizing Multi-
level Thresholds, which use a mathematical equation using the corresponding image features as a Fitness Function. The
results show that these algorithms are better than other algorithms for the Fitness Function, and GOA achieves a higher
performance.

45.2.2 Hybrid meta-heuristics

Abd Elaziz et al. [12] developed a method for determining the optimal threshold for image segmentation. Their proposed
method is an enhanced HHO by considering the Salp Swarm Algorithm (SSA), which is called HHOSSA, to improve HHO.
The evaluation results show that the proposed method compared to HHO, SSA, and other methods obtained excellent results
and performance. Samantaray et al. [20] present a new algorithm, the Harris Hawks-Cuckoo Search (HH-CS) algorithm,
based on Multi-level Thresholding. This paper uses eight different images for the breast cancer thermogram image analysis,
and some metrics such as PSNR, Feature Similarity Index (FSIM), SSIM are used. HHO-CS algorithm is beneficial for
analysis of image and Function optimization. Hosseinzade and Mozafari [5] provided a hybrid algorithm based on Genetic
Algorithm (GA) and Simulated Annealing (SA) algorithm for MTIS. The advantage of GA is that it is precise, and the
disadvantage is that it is time consuming. The advantage of the SA is that it is fast and has a simple search space, and the
disadvantage is that it may stuck in local minima. They used Otsu and Kapur methods as Fitness Functions and obtained
their results based on four benchmarks. Their results showed that their proposed algorithm outperforms other algorithms.

45.2.3 Weakness of single and combined algorithms used to solve MTIS problem

In all the papers reviewed in the literature section, MH algorithms have been used individually, improved, and combined
to solve the MTIS problem. These algorithms have been trying to obtain relatively optimal thresholds or solutions to the
MTIS problem. But according to the results of the algorithms seen in the papers and according to their evaluation, not all
of them are able to find the best global answer. In other words, according to the numbers observed for PSNR, SSIM and
processing time in these papers, the accuracy of the segmented image using the thresholds obtained from these methods is
low and most of them have high computation time. This indicates that the algorithms used in the existing papers have not
been able to obtain the optimal global answer and the thresholds obtained by the respective algorithms can not segment
the image pixels more accurately. Therefore, in this chapter, in order to improve MFO, a combined MFWOA algorithm is
proposed in which the operators used in WOA help to increase the power of MFO in finding the optimal answer.

45.3 Preliminaries
This section will discuss the Otsu method, WOA, and MFO.

45.3.1 Fitness function

In this chapter, the Otsu Thresholding method (IO Function) is used as a Fitness Function in the corresponding MH
algorithms to determine the optimal threshold vector for classifying and boundaring image pixels (Eq. (45.4)). Otsu Thresh-
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olding method [21] is a popular method used as a Fitness Function in most MTIS methods that use MH algorithms. The
Otsu method is an automatic Thresholding method obtained according to the image histogram. Using the Otsu method, the
boundaries of objects in the desired image can be specified. The Otsu function is computed using Eq. (45.1).

F =
k∑

i=0

SUMi(μi − μ1)
2 (45.1)

SUMi =
Ti+1−1∑
j=Ti

Pj (45.2)

μi =
Ti+1−1∑
j=Ti

i
Pj

SUMi

where Pj = f (j)/NUMp (45.3)

Fit = 1/F (45.4)

In Eq. (45.1), μ1 is the image density average for T1 = 0 and T2 = I (where I is the maximum pixel density of the image,
which is 255 for gray images), μi is the density average of the Ci class for Ti and Ti+1 − 1, k is the number of searched
thresholds, and SUMi is the sum of probabilities. In Eq. (45.2) and Eq. (45.3), Pj indicates the probability of the gray
level j , f (j) is the frequency of the gray level j , and NUMp is the total number of pixels in the image. Eq. (45.4) is the
same Fitness Function used in the algorithms in this chapter.

45.3.2 Whale optimization algorithm

In WOA [10], as with most optimization algorithms, the optimization process begins with a randomly generated set of
candidate solutions (

−→
Xi vector) [10]. It should be noted that for the MTIS problem in this chapter, the position of each

threshold value or the position of each solution (
−→
Xi ) is between the minimum pixel brightness and the maximum pixel

brightness in the image. Each solution is represented as a vector according to Eq. (45.5). The solutions produced using
Eq. (45.6) and evaluated using Eq. (45.4).

−→
Xi = (

xi,1, xi,2, . . . , xi,k

)
where 0 ≤ xi,1, xi,2, . . . , xi,k ≤ H (45.5)

xi,j = lb + rand(0,1) × (ub − lb), xi,j ∈ −→
Xi, j = 1,2, . . . , k (45.6)

where in MTIS problem, lb and ub are the lower bound and the upper bound, respectively, xi,k represents each threshold
of the threshold vector, rand(0,1) is a random number between 0 and 1, and H represents the maximum brightness of
the pixels in the image. The input and output of WOA are the image histogram and the threshold vector, respectively. This
algorithm is inspired by humpback whales’ bubble-net hunting method. The WOA is performed in three phases as follows
[10]:

• Siege hunting phase.
• Exploitation phase: The bubble net attacking method.
• Exploration phase: Hunting search.

Once the best search agent is identified, other search agents try to update their location to the best search agent. As:

−→
D =

∣∣∣−→C .
−→
X ∗(t) − −→

X (t)

∣∣∣ (45.7)

−→
X (t + 1) = −→

X ∗(t) − −→
A .

−→
D (45.8)

where t denotes the current iteration,
−→
A and

−→
C are the coefficient vectors,

−→
D is the distance between the position of

−→
X ∗(t)

and
−→
X (t), X∗(t) the location vector is the best solution obtained at present, and

−→
X (t) is the location vector. Vectors

−→
A
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and
−→
C are calculated as follows:

−→
A = 2−→

a .
−→
r − −→

a (45.9)
−→
C = 2−→

r (45.10)

where −→
a decreases linearly from 2 to 0 during iterations (in both exploration and exploitation phases), and −→

r is con-
sidered a random vector between 0 and 1. Two methods have been designed to model the bubble net behavior of whales
mathematically:

a. Contractile blocking mechanism

This behavior is achieved by increasing a value in Eq. (45.9). The oscillation range of
−→
A is reduced by a. In other

words,
−→
A is a random value in the distance [−a, a], and is decrease from 2 to 0 during iterations. The new location of the

search agent can be defined by selecting random values of a in the range −1 to 1 anywhere between the primary area of the
agent and the location of the current best agent.

b. Spiral Updating Location

This method first calculates the distance between the whale located in the bait’s
−→
X and

−→
Y coordinates in

−→
X ∗(t) and−→

Y ∗(t). A spiral equation is created between the whale’s position and the bait to mimic the spiral-shaped movement of the
humpback whale:

−→
Xi(t + 1) =

⎧⎨
⎩

−→
X ∗(t) − −→

A .
−→
D , p < 0.5

−→
D ′(t).ebl .cos(2πl) + −→

X ∗(t), p ≥ 0.5
(45.11)

where
−→
D ′ refers to the distance from the 1st whale to the bait (the best solution obtained so far), b is a constant for defining

the shape of the logarithmic spiral, and l is a random number between −1 and 1. It is assumed that the whale to model this
simultaneous behavior with a 50% probability chooses one of the contractile siege mechanism or spiral models to update
the whales’ position during optimization. Also:

−→
D =

∣∣∣−→C .
−−−→
Xrand − −→

X

∣∣∣ (45.12)

−→
X (t + 1) = −−−→

Xrand − −→
A .

−→
D (45.13)

where
−−−→
Xrand is the current population’s randomly selected position vector (random whale). A random search agent is

selected in |−→A | > 1 mode, while the best solution is selected when |−→A | < 1 to update the position of the search agents.
Finally, WOA stops by reaching the stop condition, and the best solution in the MTIS is the same threshold vector as the
final answer or output of the algorithm. Fig. 45.1 shows the process of producing optimal thresholds in the MTIS using
WOA.

FIGURE 45.1 The structure of the WOA in the MTIS problem.

45.3.3 Moth-flame optimization algorithm

MFO Algorithm is another nature-inspired MH for solving optimization problems designed in the year 2016 [11]. Like
other MH algorithms, the MFO starts the optimization process with an initial population

−→
Xl (i = 1,2, . . . ,N) of N moths
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that are randomly located in different locations. It should be noted here that moths and flames are both solutions. The
difference between them is the way we treat and update them in each iteration. The moths are actual search agents that
move around the search space, whereas flames are the best position of moths that obtains so far. In other words, flames can
be considered as flags or pins that are dropped by moths when searching the search space. Therefore, each moth searches
around a flag (flame) and updates it in case of finding a better solution. With this mechanism, a moth never lose its best
solution. Each moth or solution (

−→
Xi ) is shown as Eq. (45.5). The position of each moth is initialized using Eq. (45.6) and

evaluated using Eq. (45.4).
−→
Xi = −→

Dl.e
bl .cos(2πl) + −→

Fu (45.14)

where
−→
Fu is the uth flame, b is a constant for defining the shape of the logarithmic spiral,

−→
Dl defines the distance between

the ith moth
−→
Xl and the uth flame

−→
Fu (

−→
Dl = |−→Fu − −→

Xl |), and l ∈ [−1,1] is a random number. The Fitness Function is then
calculated for each search agent [11]. Here, the locations update is repeated until the stop conditions are met. In MFO, the
exploitation of the best solutions may degrade because of the updating of moths’ position regarding to N different locations
in the search space. So, a technique is used using Eq. (45.15) [11].

Fnum = round

(
N − z × N − 1

iter

)
(45.15)

where Fnum is number of flames, z is the current number of iterations, and iter indicates the maximum number of iterations.
The location and Fitness of the best target are ultimately given to the output as the best approximation of the global optimum.
Fig. 45.2 shows the process of generating optimal thresholds in the MTIS problem using the MFO algorithm [11].

FIGURE 45.2 The structure of the MFO.

45.4 Proposed method
This chapter, uses a combination of two MH algorithms, i.e., WOA and MFO, to improvise the MFO and solve the MTIS
problem. In most optimization algorithms, the process consists of two main stages: exploration and exploitation.

Exploration refers to the ability of the algorithm to search the search space globally, in which case the algorithm does not
get stuck in the local optimization. Exploitation refers to the ability to discover solutions to improve their quality locally. The
better the balance between these two phases of exploration and exploitation, the better the algorithm’s performance. WOA is
more concentrated in the exploration phase, and MFO is more concentrated in the exploitation phase. If WOA is combined
with MFO, it can achieve much better performance. Therefore, in this chapter, we combined the exploitation phase of
WOA with exploration phase of MFO and solve the MTIS problem. In MFWOA, the solutions during the exploitation
phase are updated using the operators of WOA, and in the exploration phase, only the operators of MFO are used. Then,
it computes the quality of each solution according to its Fitness Function value (Eq. (45.4)). Finally, MFWOA stops by
reaching the stop condition, and the best solution in the MTIS is the same threshold vector as the final answer or output
of the MFWOA. In this chapter, to determine the best threshold vector, the MFWOA algorithm is repeated 100 times
on the search space (image histogram). Therefore, at the beginning of optimization, an initial population of solutions is
randomly generated using Eq. (45.6). Solutions are distributed over the search space, and then the Fitness Function for
the all solution is calculated according to Eq. (45.4). Then, in the search space exploration step, the position of the other
solutions is updated based on the metric solution and according to Eq. (45.14) and Eq. (45.15). In the exploitation phase,
the solutions are updated using high-powered WOA algorithm operators. In this case, the MFWOA does not get stuck in the
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local optimization at the beginning of the optimization and achieves a high improvement with the help of WOA algorithm
operators in the exploitation phase. Therefore, in this stage, the solutions are updated using Eq. (45.11). The MFWOA
output is the same as the optimal threshold vector. Fig. 45.3 shows the flowchart of the MFWOA algorithm for determining
the threshold vector in the MTIS process.

FIGURE 45.3 The proposed MFWOA structure.

45.4.1 Computational complexity of MFWOA

The CC is a field of computational theory that examines the cost of problem-solving process. The CC of MH algorithms
is estimated based on the number of search agents, number of problem dimensions, and the maximum number of iter-
ations [22]. The CC of the sorting process for N search agents at the best and worst state is equal to CC(N × logN)

and CC(N2), respectively [10,11]. The CC of the position updating process in a D-dimensional space is also equal
to CC(N × D). Assuming I tWOA

max = I tMFO
max = T , and applying an equal number of search agents for the WOA and

MFO
(
NWOA = NMFO = N

)
. Therefore, the CC of the MFWOA during the first phase

(
CCWOA

)
and the second phase(

CCMFO
)

optimization process can be defined as [11]:

OWOA = CC (T × [CC (Sorting) + CC (position update)])

= O
(
T ×

[
N2 + N × D

])
= O

(
T × N2 + T × N × D

)
,

OMFO = O
(
T ×

[
N2 + N × D

])
= O

(
T × N2 + T × N × D

) (45.16)

The overall CC of the proposed MFWOA is obtained as;

OWOA−MFO = OWOA + OMFO = O
(
T × N2 + T × N × D

)
(45.17)
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The CC of all three algorithms (WOA, MFO, MFWOA) is the same. Because all three algorithms (WOA, MFO,
MFWOA) have almost the same structure.

45.5 Performance analysis and test results

In this section, various experiments that have been performed on the test images. We took these images from the Berkeley
Segmentation Dataset and Benchmark (Fig. 45.4(a)-(d)), and Ali Daei images which is Iranian sports legend in the field of
football (Fig. 45.4(e), (f)). For the corresponding MH algorithms, 100 search agents look up for the best threshold vector
(the best solution) on the search space during 100 iterations. The reason why we have chosen 100 search agents and 100
iterations for the MH algorithms used in this chapter is that the higher the number of population members (search agents)
and the number of iterations in the algorithms, these algorithms will achieve more accurate and better answers. The stop
condition for any algorithm is to reach the iteration 100th (same conditions for all algorithms: the same Fitness Function,
100 search agents, and 100 iterations). In this case, it is better to calculate the statistical results using ANalysis Of VAriance
(ANOVA) or P-Value for the corresponding algorithms and identify the best algorithm in terms of performance.

FIGURE 45.4 Test images in proposed methods. (a) Test 1 (b) Test 2 (c) Test 3 (d) Test 4 (e) Test 5 (f) Test 6.
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45.5.1 Evaluation metrics

Like other researches in this field, this chapter uses SSIM, PSNR, processing time, CC, Fitness Function value, threshold
values, and statistical test evaluation metrics to evaluate the algorithms and compare the proposed method (MFWOA tech-
nique) to similar algorithms. The proposed algorithm and the comparative mechanisms are programmed in “MATLAB®

2018b” and run in a “Windows 7-64bit” environment on a laptop with an Intel Core i4 GHz processor and “6 GB” memory.

45.5.1.1 Peak signal-to-noise ratio (PSNR)
The PSNR evaluation metric is a famous metric used to measure the similarity between the segmented and original images.
The amount of PSNR for the image is obtained using Eq. (45.19) and depends on the Mean Squared Error (MSE) value
[20].

MSE = 1

m × n

m∑
i=1

n∑
j=1

(IO(m,n) − IS(m,n)) (45.18)

PSNR (IO, IS) = 10Log10(
2552

MSE
) (45.19)

For the image with a size of m×n, IO(m,n) represents the original image pixels and IS(m,n) represents the segmented
image pixels.

45.5.1.2 Structural similarity index measure (SSIM)
The SSIM is a famous metric in the image segmentation methods that is used to measure the amount of structural similarity
between the original image (IO ) and segmented image (IS). This metric is obtained using Eq. (45.20) [3].

SSIM (IO, IS) = (2μ1μS + c1)(2σ1,S + c2)

(μ2
1 + μ2

S + c1)(σ
1
1 + σ 2

S + c2)
(45.20)

Here, μ1 and μS are the mean brightness intensity of the IO and IS , respectively. The σ1 and σs , represent the standard
deviation of images IO and IS images, respectively. The σ1,S represents covariance between IO and IS images. c1 and c2
are two constant values that are 6.50 and 58.52, respectively [3]. The higher the SSIM value in image segmentation methods
and the closer it is to 1, the corresponding method is more effective.

45.5.1.3 Processing time
In image segmentation methods, processing time (second) is also one of the essential metrics for evaluating algorithms. In
this chapter, we have calculated the processing time of each MH algorithm in 100 iterations.

45.5.1.4 Computational complexity
Computational Complexity (CC) is one of the metrics for evaluating MH algorithms, which can be used to compare al-
gorithms with more accuracy and certainty. Table 45.1 shows the CC for the proposed algorithm and the comparable
algorithms.

TABLE 45.1 The Computational complexity.

Algorithm Computational complexity

HHO [24] O(N + T × N × D + T × N)

EO [25] O(T × N × D + T × C × N)

MPA [26] O(T × N + T × N × D + T × C)

WOA [10] O(T × N2 + T × N × D)

MFO [11] O(T × N2 + T × N × D)

MFWOA O(T × N2 + T × N × D)

According to Table 45.1, T , N , C, and D represent the number of iterations, the number of population members, cost
of Fitness Function, and the Dimensions size of each population member, respectively. As can be seen from Table 45.2, in
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this chapter, the CC of the WOA, MFO, EO and MFWOA is the same. MPA and HHO algorithms are also more CC. But
in general, the order of CC in all of them is T × N2.

45.5.1.5 Fitness function value
The Fitness Function, which is essential in all MH algorithms, and its selection is a fundamental principle, is necessary for
MTIS methods performed using MH algorithms. In this chapter, the optimal thresholds are obtained using the minimization
of the Fitness Function that the exact inverse Otsu Function (Eq. (45.4)).

45.5.1.6 Threshold values
The values of the threshold vector are an essential metric in MTIS. The ultimate image segmentation is done in MTIS meth-
ods using the threshold vector. In this chapter, the obtained threshold vector by each algorithm is presented in Table 45.7.

45.5.1.7 Statistical test (P-Value)
As with previous papers in the MTIS field [4,19], in this chapter, to compare the proposed MFWOA method with other MH
algorithms, we use the ANOVA or P-value with a significant level of 0.05 [23]. The P-Value for PSNR, SSIM, processing
time and Fitness Function is calculated, and then the proposed method is compared with other algorithms. Similar to pre-
vious papers [4,19], there are two hypotheses of zero and alternatives. According to the hypothesis of zero, there should be
no significant difference between the mean values of the compared algorithms and the MFWOA algorithm (P-Value should
be more than 0.05). However, according to the alternative hypothesis, there should be a significant difference between the
proposed MFWOA method and comparative algorithms (i.e., P-Value should be less than 0.05).

45.5.2 The results and discussions

In this section, the results of the proposed MFWOA method and comparable algorithms are thoroughly examined using
evaluation metrics. In Table 45.2, the list of constant parameters used in each MH algorithm with their numerical values is
recorded.

TABLE 45.2 The constant parameters
of each algorithm and their values.

Algorithm Parameters Value

WOA [10]
A [0,2]
B 1

L [−1,1]
MFO [11]

B 1

L [−1,1]

EO [25]

V 1

a1 2

a2 1

GP 0.5

HHO [24]
MPA [26]

E0 [−1,1]
FADs 0.2

P 0.5

We compare our proposed algorithm with WOA [10], MFO [11], HHO [24], Equilibrium Optimizer (EO) [25], and Ma-
rine Predators Algorithm (MPA) [26] algorithms. The reason for choosing the EO, MPA, and HHO algorithms to compare
with our work is that these three algorithms are strong and new algorithms. So we chose them to compare with our work
to show the superiority of our proposed algorithm over them. We tested our proposed MFWOA algorithm and others for
different threshold levels of k (k = 2,3,4,5,6,7,8,9,10,16,32) on the eight images, as it can be seen in Fig. 45.4, to be
able to make more accurate evaluations and comparisons using the relevant evaluation metrics. Table 45.3 shows the value
of the Fitness Function obtained from the proposed MFWOA algorithm and other algorithms, for different thresholds for
all test images, during 100 iterations of the algorithms. We introduce the maximum and minimum values of the Fitness
Function by each algorithm at each threshold level for some images, which can be seen in Table 45.3. This chapter obtains
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TABLE 45.3 Value of Fitness Function for different threshold levels during 100 runs for different images.

k Optimization Algorithms k Optimization Algorithms

HHO EO WOA MPA MFO MFWOA HHO EO WOA MPA MFO MFWOA

Te
st

1

2 1559.8 1559.8 1559.9 1559.8 1559.8 1559.8

Te
st

4

2 2399.9 2399.9 2399.1 2399.9 2399.9 2297.8

3 1990.8 2021 2014.3 2021 2021 1990.5 3 3154.6 3211 3209.9 3211 3211 3010.9

4 2313.6 2443.3 2315 2455.5 2455.5 2313 4 3569.2 4008.9 3565 4044.1 4044.1 3443.3

5 2784 2794.5 2771.5 2810 2784.1 2773.4 5 4295.5 4406.7 4422.1 4426.1 4406.4 4113.1

6 3268.1 3239.1 3207 3244.5 3244.5 3053.7 6 4362.1 5190.6 4722.7 5185.2 5217.4 4119.1

7 3515.7 3624.7 3531.6 3677 3599 3488.1 7 4526.3 5768.5 6040 5543.1 6050.7 4489.7

8 3947.8 3992 3938.6 4033.5 4005.6 3930.1 8 5616.9 6392.3 6339.1 6326.3 6390.7 5545.4

9 4373.6 4396.7 4339 4465.9 4433.7 4264.8 9 6179 7031 6355 7191.8 7224.1 6372.3

10 3669.3 4813.7 4279.5 4898.4 4334.1 3576.6 10 6384.5 7569.8 6848.3 7443.4 6507.8 6355.1

16 5915.4 7155.2 5609.6 7265.4 7263.4 5630.1 16 9344 11339 8746.1 11533 10343 8565.9

32 10770 13326 10324 12680 12036 8482.3 32 15213 21019 13420 20175 19148 12483

Te
st

2

2 1952.3 1952.3 1951.8 1952.3 1952.3 1950.4

Te
st

5

2 2510 2510 2510 2510 2510 2510

3 2600.6 2600.6 2520.7 2600.6 2600.6 2522.5 3 3518.9 3518.3 3518.3 3518.3 3518.3 3518.3

4 2947.2 3158.1 3173 3174 3174 2929.7 4 3538.4 4060.8 3678.5 4102.3 3552.3 3578.1

5 3565.1 3579.8 3563.4 3600.7 3600.7 3431.2 5 4910.8 4895.8 4967 4987.1 4555.6 4533.4

6 3792.8 4122.4 3742.3 4174.2 4170.1 3749.2 6 4199.8 5547 5398.4 5561.5 5571.2 40118

7 4413.1 4609 4061 4600.8 4519.8 4431.4 7 5254.1 6196.1 6456 6145.6 6024.5 5079.4

8 4583.4 5094.2 4605.6 5174.3 5091 4454.8 8 4648.8 6841.5 6763 7030.4 7030.4 4111.3

9 4926 5603.4 5596.9 5601 5358.9 4871 9 7560.4 7527.5 7331.9 7924.9 7604.7 6111.3

10 4811 6048.9 5349.1 6093.4 6091.2 4450.7 10 8176 8285.6 8024.5 8387 8066.1 8050.4

16 6669.4 9040.4 7514.6 9170.8 8924.3 6385.9 16 7306.4 12145 10091 10353 11900 6716

32 11729 16658 12333 15563 14832 10257 32 16636 21332 17154 20705 17171 16237

Te
st

3

2 1962.1 1962.1 1961.7 1962.1 1962.1 1961.1

Te
st

6

2 5686.4 5686.4 5686.2 5686.4 5686.4 5685.8

3 3176.1 3176.1 3176.1 3176.1 3176.1 3174.6 3 8068.4 8117.4 8120 8121 8121 8120.1

4 3331.2 3549.2 3330.6 3607.8 3607.8 3207.8 4 8522.9 10507 8522.4 10507 85507 8522.2

5 3758.2 4537.6 3757.4 4537.6 4537.6 3600.3 5 10859 10936 10884 10961 10902 10907

6 4936.6 4940.3 4953.4 4969.3 4969.2 4944.8 6 11263 13251 11350 13347 13347 10328

7 5897.3 5851.6 5104 5899 5400.9 5023.1 7 13655 15006 13725 15734 13708 12784

8 5897.4 6264.3 6244.9 6055.6 6330.7 5706.9 8 15567 16145 15087 16187 15187 15167

9 6091.4 7005 6403.1 7260.5 7260.5 5818.6 9 16435 17983 16540 18573 16552 16487

10 7338.1 7654.3 7247.4 7692.2 7692.1 6521 10 14284 15385 14442 16960 14974 13875

16 10138 11471 9951.5 11003 11003 8578.7 16 25440 28772 25925 31412 25174 25191

32 16967 21469 16748 19655 21819 13493 32 39047 53566 36612 50999 39423 36698

the proposed MFWOA and other algorithms by minimizing the Fitness Function. Therefore, according to Table 45.3, if
each algorithm’s obtained Fitness Function value is lower, the corresponding algorithm performs better.

Also, as shown in Table 45.3, by increasing the value of k, the value of the obtained Fitness Function by all algorithms for
Test3 and Test5 increases. For the Test1 image, the value of the obtained Fitness Function by HHO, WOA, and MFWOA
decreases at k = 10 and increases with an increasing value of k. For the Test2 image, the value of the obtained Fitness
Function by MFWOA decreases at k = 10 and increases with the value of k. For the Test4 image, the value of the obtained
Fitness Function by the MFO decreases at k = 10 and then increases as the value of k increases. For the Test6 image, the
value of the obtained Fitness Function by all algorithms decreases at k = 10 and then increases as the value of k increases.
As per the results in Table 45.3, in most cases, the proposed MFWOA algorithm has a lower Fitness Function value than
other algorithms. If it is higher, it does not differ much from different algorithms. It does not reduce the PSNR and SSIM
values. Therefore, the proposed MFWOA algorithm has the necessary efficiency. It can be said that the proposed algorithm
has better performance than other algorithms and can achieve the most suitable thresholds.
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For Test1 image:

At the level k = 2, all algorithms have the same value. When k = 3, the lowest Fitness Function values are related to
MFWOA, HHO, WOA, and other algorithms with the same value. Considering k = 4, the lowest Fitness Function values
are related to HHO, WOA, MFWOA, EO, and MPA=MFO, respectively. At the k = 5, the lowest values of the Fitness
Function are related to WOA, WOA=MFWOA, HHO=MFO, MPA, and EO, respectively. At the k = 6, the lowest val-
ues of the Fitness Function are associated with MFWOA, WOA, EO, MFO=MPA, and HHO, respectively. In the case of
k = 7, the lowest values of the Fitness Function are related to MFWOA, WOA, HHO, MFO, EO, MFO, and MPA, respec-
tively. Assuming k = 8, the lowest values of the Fitness Function are related to MFWOA, WOA, HHO, EO, MFO, and
MPA, respectively. At the k = 9, the lowest values of the Fitness Function are related to MFWOA, WOA, HHO, EO, and
MPA=MFO, respectively. At the k = 10, the lowest values of the Fitness Function are related to MFWOA, WOA, HHO,
EO, MFO, and MPA, respectively. At the k = 16, the lowest values of the Fitness Function are related to MFWOA, WOA,
HHO, EO, MFO, and MPA, respectively. At the k = 32, the lowest values of the Fitness Function are related to MFWOA,
WOA, HHO, MFO, MPA, and EO, respectively.

For Test2 image:

When k = 2, the lowest values of the Fitness Function are related to MFWOA, WOA, and other algorithms that have the
same value. At the k = 3, the lowest Fitness Function values are associated with MFWOA, WOA, and other algorithms with
the same value. At the k = 4, the lowest Fitness Function values are related to MFWOA, HHO, EO, WOA, MPA=MFO,
respectively. When k = 5, the lowest values of the Fitness Function are associated with MFWOA, WOA, HHO, EO, and
MPA=MFO, respectively. At the k = 6, the lowest values of the Fitness Function are related to MFWOA, WOA=HHO,
EO, MPA, and MFO, respectively. At the k = 7, the lowest values of the Fitness Function are associated with MFWOA,
WOA, HHO, EO, MFO, and MPA, respectively. At the k = 8, the lowest values of the Fitness Function are related to
MFWOA, HHO, WOA, MFO, EO, and MPA, respectively. At the k = 9, the lowest values of the Fitness Function are
related to MFWOA, HHO, MFO, WOA, MPA, and EO, respectively. At the k = 10, the lowest values of the Fitness
Function are related to MFWOA, HHO, WOA, EO, and MPA=MFO, respectively. At the k = 16, the lowest values of the
Fitness Function are related to MFWOA, HHO, WOA, EO, MFO, and MPA, respectively. At the k = 32, the lowest values
of the Fitness Function are related to MFWOA, HHO, WOA, MFO, MPA, and EO, respectively.

For Test3 image:

When k = 2, the lowest values of the Fitness Function are related to MFWOA, WOA, and other algorithms that have the
same value. At the k = 3, all algorithms have the same value. At the k = 4, the lowest Fitness Function values are related to
MFWOA, WOA, HHO, EO, MPA=MFO, respectively. When k = 5, the lowest values of the Fitness Function are associated
with MFWOA, WOA, HHO, and MFO=MPA=EO, respectively. At the k = 6, the lowest values of the Fitness Function are
related to HHO, EO, WOA, MFWOA, and MPA=MFO, respectively. At the k = 7, the lowest values of the Fitness Function
are associated with MFWOA, WOA, MFO, EO, HHO, and MPA, respectively. At the k = 8, the lowest values of the Fitness
Function are related to MFWOA, HHO, MPA, WOA, EO, and MFO, respectively. At the k = 9, the lowest values of the
Fitness Function are related to MFWOA, HHO, WOA, EO, and MPA=MFO, respectively. At the k = 10, the lowest values
of the Fitness Function are related to MFWOA, WOA, HHO, EO, and MPA=MFO, respectively. At the k = 16, the lowest
values of the Fitness Function are related to MFWOA, WOA, HHO, MFO=MPA, and EO, respectively. At the k = 32, the
lowest values of the Fitness Function are associated with MFWOA, WOA, HHO, MPA, EO, and MFO, respectively.

For Test4 image:

When k = 2, the lowest values of the Fitness Function are related to MFWOA, and other algorithms have the same value.
At the k = 3, the lowest Fitness Function values are associated with MFWOA, HHO, WOA, and other algorithms with
the same value. At the k = 4, the lowest Fitness Function values are related to MFWOA, WOA, HHO, EO, MPA=MFO,
respectively. At the k = 5, the lowest values of the Fitness Function are associated with MFWOA, HHO, EO=MFO, WOA,
and MPA, respectively. At the k = 6, the lowest values of the Fitness Function are related to MFWOA, WOA=HHO, EO,
MPA, and MFO, respectively. At the k = 7, the lowest values of the Fitness Function are associated with MFWOA, HHO,
MPA, EO, WOA, and MFO, respectively. At the k = 8, the lowest values of the Fitness Function are related to MFWOA,
HHO, MPA, WOA, MFO, and EO, respectively. At the k = 9, the lowest values of the Fitness Function are related to HHO,
WOA, MFWOA, EO, MPA, and MFO, respectively. At the k = 10, the lowest values of the Fitness Function are related
to MFWOA, HHO, MFO, WOA, MPA, and EO, respectively. At the k = 16, the lowest values of the Fitness Function
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TABLE 45.4 Value of PSNR for different threshold levels during 100 runs for different images.

k Optimization Algorithms k Optimization Algorithms

HHO EO WOA MPA MFO MFWOA HHO EO WOA MPA MFO MFWOA

Te
st

1

2 24.3 24.3 24.298 24.3 24.3 24.304

Te
st

4

2 22.824 22.824 22.814 22.824 22.824 22.838

3 21.773 22.9 22.401 22.9 22.9 22.948 3 22.049 20.55 20.317 20.55 20.55 22.582

4 22.947 24.512 24.712 20.658 20.658 24.966 4 23.304 19.604 23.259 19.604 19.604 23.655

5 24.339 22.9 25.988 22.9 25.423 25.989 5 22.096 23.578 23.337 23.579 23.524 23.972

6 26.711 23.036 22.524 23.036 23.036 26.989 6 20.332 21.946 24.364 21.946 20.557 24.365

7 27.306 20.658 26.151 20.658 22.9 27.932 7 23.99 19.604 19.981 23.887 19.605 23.998

8 27.523 25.471 22.624 23.036 25.463 27.705 8 23.374 23.906 20.847 21.947 20.558 24.447

9 22.253 23.036 24.003 23.036 21.897 24.585 9 22.289 20.55 21.128 21.947 20.558 24.925

10 28.636 22.901 26.547 20.658 25.501 28.66 10 21.129 24.712 25.983 22.087 23.906 25.991

16 22.267 26.662 25.341 23.036 22.901 26.677 16 24.034 23.955 21.198 23.398 21.168 26.176

32 30.528 25.834 20.282 26.114 30.213 31.533 32 26.663 25.203 26.978 25.516 27.964 27.973

Te
st

2

2 22.973 22.973 22.966 22.973 22.973 22.986

Te
st

5

2 21.47 21.47 21.47 21.466 21.47 21.476

3 21.229 21.229 22.373 21.229 21.229 22.483 3 19.323 19.636 19.636 19.636 19.756 19.836

4 23.323 19.917 19.93 19.917 19.917 22.937 4 21.894 18.648 22.189 18.648 18.648 22.264

5 20.996 21.233 21.816 21.254 21.233 22.663 5 18.668 19.636 20.313 19.636 22.753 22.805

6 21.277 23.259 24.825 21.244 21.234 24.833 6 20.549 19.87 22.506 19.853 19.853 22.589

7 23.423 24.632 22.37 21.233 24.632 25.097 7 22.186 22.791 19.636 18.899 22.791 22.861

8 21.343 22.11 23.158 21.244 24.373 25.383 8 22.919 22.753 21.798 19.853 19.87 24.326

9 22.848 24.678 23.35 21.233 24.802 24.883 9 22.445 22.791 22.477 19.636 19.979 22.847

10 23.278 24.538 27.019 24.64 25.241 27.934 10 21.395 21.705 21.717 21.892 22.667 22.728

16 20.895 23.298 20.019 21.26 25.94 25.984 16 20.27 23.339 25.026 25.163 22.574 25.288

32 21.653 25.983 20.547 27.303 25.748 27.759 32 19.132 23.339 18.182 26.08 26.105 27.856

Te
st

3

2 24.985 24.985 24.972 24.985 24.985 24.985

Te
st

6

2 22.16 22.17 22.167 22.16 22.16 22.167

3 23.304 23.304 23.304 23.304 23.304 23.304 3 20.436 20.426 20.265 20.426 20.426 20.45

4 25.851 22.544 25.799 22.544 22.544 25.801 4 22.278 19.17 22.218 19.17 19.17 22.343

5 25.332 23.304 26.124 23.304 23.304 26.235 5 21.02 23.072 23.564 20.426 23.123 23.583

6 25.033 23.304 23.271 23.304 23.304 24.143 6 23.053 20.894 22.107 20.508 20.508 23.543

7 23.33 23.304 25.431 23.304 22.544 25.485 7 20.933 19.17 23.478 19.17 23.276 23.695

8 24.459 25.831 24.406 25.831 23.304 25.989 8 23.61 23.178 21.927 20.508 20.508 23.705

9 25.536 23.304 25.388 23.304 23.304 25.706 9 21.055 20.508 20.06 20.508 23.322 23.399

10 24.659 23.304 25.513 23.304 23.304 25.64 10 24.453 20.508 23.306 19.17 23.072 24.799

16 25.468 23.304 23.254 25.978 25.975 28.053 16 22.073 20.932 22.785 19.17 22.615 22.712

32 25.194 25.975 26.725 27.197 25.011 30.676 32 21.579 23.136 24.572 25.315 25.112 25.337

are related to MFWOA, WOA, HHO, MFO, EO, and MPA, respectively. At the k = 32, the lowest values of the Fitness
Function are related to MFWOA, WOA, HHO, MFO, MPA, and EO, respectively.

For Test5 image:

When k = 2 and 3, all algorithms have the same value. At the k = 4, the lowest Fitness Function values are related to HHO,
MFO, MFWOA, WOA, EO, and MPA, respectively. At the k = 5, the lowest values of the Fitness Function are related
to MFWOA, MFO, EO, HHO, MPA, and WOA, respectively. At the k = 6, the lowest values of the Fitness Function are
related to MFWOA, HHO, WOA, EO, MPA, and MFO, respectively. At the k = 7, the lowest values of the Fitness Function
are related to MFWOA, HHO, MFO, MPA, WOA, and EO, respectively. At the k = 8, the lowest values of the Fitness
Function are related to MFWOA, HHO, WOA, EO, and MFO=MPA, respectively. At the k = 9, the lowest values of the
Fitness Function are associated with MFWOA, WOA, EO, HHO, MFO, and MPA, respectively. At the k = 10, the lowest
values of the Fitness Function are related to WOA, MFWOA, MFO, HHO, EO, and MPA, respectively. At the k = 16,



A MTIS method using a combined of whale and moth-flame optimization algorithms Chapter | 45 637

TABLE 45.5 Value of SSIM for different threshold levels during 100 runs for different images.

k Optimization Algorithms k Optimization Algorithms

HHO EO WOA MPA MFO MFWOA HHO EO WOA MPA MFO MFWOA

Te
st

1

2 0.75532 0.75532 0.75529 0.75532 0.75532 0.75602

Te
st

4

2 0.70335 0.70335 0.70209 0.70335 0.70335 0.70713

3 0.6952 0.7155 0.69704 0.7155 0.7155 0.71644 3 0.6951 0.6794 0.67302 0.6794 0.6794 0.69895

4 0.71683 0.76391 0.77424 0.62461 0.62461 0.7752 4 0.71472 0.64733 0.71068 0.64733 0.64733 0.72004

5 0.75717 0.7155 0.81393 0.7155 0.80591 0.8173 5 0.70014 0.73655 0.72717 0.73654 0.73519 0.73579

6 0.83815 0.72179 0.7233 0.72179 0.72179 0.83815 6 0.68101 0.69013 0.75031 0.69013 0.68094 0.75339

7 0.83708 0.62461 0.83132 0.62461 0.7155 0.83986 7 0.77418 0.64733 0.66918 0.7516 0.64733 0.77696

8 0.85276 0.81067 0.73891 0.72179 0.80813 0.85832 8 0.75212 0.7353 0.7021 0.69013 0.68095 0.75525

9 0.69315 0.72179 0.77298 0.72179 0.70013 0.7746 9 0.71801 0.6794 0.70808 0.69013 0.68095 0.7769

10 0.87498 0.7155 0.84179 0.62461 0.81031 0.87866 10 0.72621 0.76047 0.79503 0.69895 0.7353 0.79891

16 0.69532 0.85805 0.82013 0.72179 0.7155 0.85611 16 0.79158 0.75352 0.72806 0.73423 0.72726 0.79323

32 0.90707 0.82056 0.60426 0.82678 0.90384 0.93129 32 0.85374 0.77731 0.83593 0.79718 0.82723 0.85744

Te
st

2

2 0.68017 0.68017 0.67086 0.68017 0.68017 0.68151

Te
st

5

2 0.63566 0.63566 0.63566 0.6317 0.63566 0.6357

3 0.69931 0.69931 0.68173 0.69931 0.69931 0.69942 3 0.51512 0.5289 0.5289 0.5289 0.53344 0.5389

4 0.72248 0.64058 0.64053 0.64058 0.64058 0.72825 4 0.65709 0.48206 0.66658 0.48206 0.48206 0.66762

5 0.70998 0.70009 0.71525 0.70132 0.70009 0.71595 5 0.4673 0.5289 0.56448 0.5289 0.7079 0.70855

6 0.70653 0.70328 0.73991 0.70207 0.69942 0.73993 6 0.70239 0.53843 0.67887 0.53565 0.53565 0.67204

7 0.70042 0.75025 0.69395 0.70009 0.75025 0.77269 7 0.67159 0.71211 0.5289 0.49342 0.71211 0.71629

8 0.72172 0.67525 0.72049 0.70207 0.72391 0.75438 8 0.76008 0.7079 0.64822 0.53565 0.53843 0.76131

9 0.74742 0.75157 0.70676 0.70009 0.74343 0.75839 9 0.71149 0.71211 0.66499 0.5289 0.54019 0.71369

10 0.76407 0.72984 0.79361 0.75254 0.75629 0.79414 10 0.72801 0.64803 0.63847 0.65468 0.70859 0.7287

16 0.70873 0.70452 0.67308 0.70143 0.78095 0.78137 16 0.7162 0.7357 0.78329 0.78231 0.70222 0.78444

32 0.76002 0.82033 0.69726 0.80164 0.80385 0.82164 32 0.49859 0.7357 0.43112 0.82113 0.81574 0.8539

Te
st

3

2 0.82627 0.82627 0.82462 0.82627 0.82627 0.82628

Te
st

6

2 0.6727 0.6727 0.6723 0.6727 0.6727 0.67288

3 0.80202 0.80202 0.80202 0.80202 0.80202 0.80206 3 0.65881 0.60842 0.60297 0.60842 0.60842 0.65907

4 0.85073 0.78395 0.85124 0.78395 0.78395 0.85575 4 0.67564 0.57719 0.67188 0.57719 0.57719 0.67628

5 0.83639 0.80202 0.85251 0.80202 0.80202 0.85577 5 0.66585 0.70198 0.71132 0.60842 0.70633 0.71231

6 0.83252 0.80202 0.80241 0.80202 0.80202 0.83961 6 0.71637 0.6588 0.67332 0.61308 0.61308 0.71783

7 0.80306 0.80202 0.83654 0.80202 0.78395 0.83781 7 0.66091 0.57719 0.71563 0.57719 0.71419 0.71651

8 0.81083 0.85136 0.82185 0.85136 0.82202 0.85823 8 0.71285 0.71004 0.66783 0.61308 0.61308 0.71508

9 0.84288 0.80202 0.82262 0.80202 0.80202 0.84371 9 0.67035 0.61308 0.60412 0.61308 0.71404 0.71547

10 0.81873 0.80202 0.85379 0.80202 0.80202 0.85471 10 0.78293 0.61308 0.6754 0.57719 0.70198 0.78997

16 0.86899 0.80202 0.80049 0.85863 0.85837 0.8727 16 0.74956 0.6608 0.69741 0.57719 0.76925 0.76984

32 0.83703 0.85837 0.83454 0.87201 0.83475 0.9134 32 0.69714 0.70413 0.72049 0.72909 0.72309 0.75979

the lowest values of the Fitness Function are related to MFWOA, HHO, WOA, MPA, MFO, and EO, respectively. At the
k = 32, the lowest values of the Fitness Function are related to MFWOA, HHO, WOA, MFO, MPA, and EO, respectively.

For Test6 image:

At the level k = 2, the lowest values of the Fitness Function are related to MFWOA, and other algorithms have the same
value. At the k = 3, the lowest Fitness Function values are associated with HHO, WOA=MFWOA, EO, and other algo-
rithms have the same value. At the k = 4, the lowest Fitness Function values are related to HHO=WOA=MFWOA and
MPA=EO=MFO, respectively. At the k = 5, the lowest values of the Fitness Function are associated with HHO, WOA,
MFO, MFWOA, EO, and MPA, respectively. At the k = 6, the lowest values of the Fitness Function are related to HHO,
WOA, MFWOA, EO, and MFO=MPA, respectively. At the k = 7, the lowest values of the Fitness Function are associated
with MFWOA, HHO, MFO, WOA, EO, and MPA, respectively. When k = 8, the lowest values of the Fitness Function are
related to WOA, MFWOA, MFO, HHO, EO, and MPA, respectively. At the k = 9, the lowest values of the Fitness Function
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TABLE 45.6 Value of execution time for different threshold levels during 100 runs for different image.

k Optimization Algorithm k Optimization Algorithm

HHO EO WOA MPA MFO MFWOA HHO EO WOA MPA MFO MFWOA

Te
st

1

2 2.5885 35.545 1.482 2.3924 3.0818 2.3628

Te
st

4

2 2.5304 35.087 1.3939 2.5094 2.986 2.2661

3 5.8835 49.898 4.497 5.9809 6.4076 5.3508 3 12.838 151.02 8.1752 8.4191 14.121 9.54

4 6.7822 66.293 5.2668 7.0125 7.3707 6.2322 4 14.488 189.58 12.999 14.736 19.804 13.94

5 7.4725 65.063 5.9615 7.9977 8.1565 6.9915 5 12.578 224.55 10.74 12.444 12.82 11.756

6 8.3069 73.484 6.5406 15.31 16.713 7.8798 6 8.5955 71.098 6.4763 8.5368 8.9628 7.6614

7 17.237 246.06 15.169 26.738 28.324 16.516 7 9.5911 76.536 7.4286 20.116 13.905 8.7317

8 20.89 209.33 18.593 33.58 36.424 27.621 8 14.203 88.523 11.925 14.429 14.888 13.436

9 26.945 113.04 23.851 26.723 27.196 25.491 9 11.537 91.224 8.93 11.604 11.987 10.517

10 12.246 102.65 9.697 12.676 13.144 11.475 10 12.783 97.781 9.7056 12.727 13.228 11.422

16 16.357 143.99 11.514 15.888 16.942 14.11 16 15.583 142.23 12.028 16.086 16.847 14.634

32 26.21 323.04 19.098 26.871 28.344 23.974 32 25.36 251.9 19.156 27.068 27.055 24.158

Te
st

2

2 2.549 128.42 1.451 2.4985 6.6195 2.1516

Te
st

5

2 2.6203 57.697 1.391 2.4971 3.2826 2.228

3 9.6909 186.56 8.2486 9.5985 9.9906 9.0861 3 6.2835 50.61 4.8264 6.2362 6.6442 5.7335

4 6.543 57.122 5.0665 6.7625 7.3037 6.0152 4 6.7514 56.324 5.1596 13.529 17.062 6.1574

5 7.9833 66.109 6.0976 7.9914 8.3577 7.1817 5 17.838 207.19 15.94 17.85 18.19 17.125

6 8.8229 72.188 6.6915 8.6627 9.2596 7.903 6 8.9051 72.104 6.6849 8.8714 9.3535 7.9926

7 9.8139 79.02 7.5362 19.877 14.386 8.8675 7 9.9042 101.6 7.671 10.287 10.415 9.1771

8 14.869 88.98 12.273 14.719 15.003 13.77 8 10.791 127.49 8.2182 10.931 11.497 9.8845

9 26.28 92.145 17.342 27.478 28.636 22.641 9 12.317 95.167 9.2849 12.138 12.741 11.044

10 29.133 267.31 26.483 29.127 29.663 28.062 10 13.167 259.31 10.039 12.981 13.848 11.913

16 15.299 136.88 11.539 15.586 15.958 13.82 16 17.257 347.67 12.222 16.544 17.589 14.839

32 25.04 246.95 18.619 25.772 75.463 22.633 32 27.963 261.04 19.505 30.369 28.826 25.996

Te
st

3

2 3.6559 71.727 3.3928 8.0961 9.1527 6.1958

Te
st

6

2 2.6428 62.506 1.4912 2.3882 3.1865 2.2949

3 12.349 122.93 10.851 18.88 15.85 14.015 3 6.3289 49.805 4.6819 6.0926 6.6972 5.5972

4 13.928 60.724 8.8811 10.274 13.509 9.4412 4 7.1452 59.161 5.6421 7.4866 8.4836 6.6062

5 10.871 89.487 9.2188 11.257 11.626 10.337 5 21.886 67.944 9.7285 11.672 17.889 11.621

6 8.8765 75.884 6.9928 9.0694 9.3399 8.1975 6 28.705 98.079 22.445 27.226 29.218 26.46

7 9.5359 80.774 7.3131 9.7526 9.8271 8.5936 7 21.654 134.25 18.968 21.65 21.815 20.477

8 10.41 85.279 8.0442 10.447 10.864 9.361 8 11.129 118.45 8.424 11.156 11.659 10.145

9 11.26 94.081 8.8589 11.642 25.777 10.467 9 12.908 101.33 9.5723 12.67 13.173 11.612

10 26.129 268.21 23.428 26.423 37.202 25.088 10 13.316 126.21 10.485 13.549 14.324 12.261

16 26.046 322.93 22.119 26.311 26.775 24.621 16 23.844 164.18 12.349 21.124 37.755 15.169

32 26.014 477.14 18.658 26.333 27.581 23.482 32 48.453 316.88 39.833 48.312 49.638 45.08

are related to HHO, MFWOA, WOA, MFO, EO, and MPA, respectively. At the k = 10, the lowest values of the Fitness
Function are related to MFWOA, HHO, WOA, MFO, EO, and MPA, respectively. Considering k = 16, the lowest values
of the Fitness Function are related to MFO, MFWOA, HHO, WOA, EO, and MPA, respectively. At the k = 32, the lowest
values of the Fitness Function are related to WOA, MFO, MFWOA, HHO, MPA, and EO, respectively.

Table 45.4 shows the PSNR values of the segmented image from the obtained optimal thresholds by each MH algorithm
and the proposed MFWOA algorithm for different photos at different threshold levels. Inspecting the results in Table 45.4,
the proposed MFWOA method has achieved the desired quality for the segmented images at different threshold levels.
The proposed MFWOA method has a higher PSNR value than the MFO, WOA, HHO, EO, and MPA algorithms for all
threshold levels and relevant images. According to Table 45.4, the value of the PSNR decreases by each algorithm, with
increasing k and increasing at other levels.

Table 45.5 shows the value of SSIM for different images and different threshold levels after 100 runs. According
to Table 45.5, the proposed method has a higher SSIM value for all images than the existing algorithms compared in
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TABLE 45.7 The value of thresholds during 100 runs for different images.

Image k EO WOA HHO MPA MFO MFWOA

Te
st

1

2 99, 159 86, 149 99, 156 98, 159 98, 159 94, 155

3 29, 90, 117 29, 57, 117 29, 90, 116 29, 90, 117 29, 90, 116 29, 79, 117

4 29, 116, 117, 236 29, 85, 119, 236 29, 90, 102, 159 29, 29, 90, 117 29, 109, 119, 218 29, 68, 103, 170

5 29, 29, 90, 92, 117 29, 29, 59, 59, 133 29, 29, 92, 107, 109 29, 90, 111, 151, 231 29, 29, 69, 81, 104 29, 49, 90, 108, 150

Te
st

2

2 76, 140 76, 140 76, 140 76, 140 76, 140 76, 140

3 125, 153, 253 118, 153, 254 4, 85, 127 4, 88, 126 127, 153, 254 42, 108, 169

4 4, 125, 126, 254 24, 132, 149, 226 4, 125, 127, 252 4, 84, 85, 142 85, 147, 160, 254 37, 121, 131, 207

5 4, 75, 125, 140, 253 4, 46, 116, 128, 254 4, 116, 130, 167, 225 4, 4, 94, 100, 118 109, 142, 144, 207, 222 4, 79, 123, 145, 244

Te
st

3

2 93, 158 93, 159 92, 157 91, 159 92, 156 92, 157

3 129, 153, 255 95, 147, 249 1, 89, 125 1, 88, 128 127, 154, 255 32, 108, 167

4 1, 129, 130, 255 1, 112, 138, 255 1, 51, 98, 128 1, 87, 94, 153 90, 137, 141, 254 30, 91, 111, 178

5 128, 153, 155, 255, 255 129, 165, 166, 255, 255 1, 51, 87, 109, 167 1, 13, 87, 87, 130 138, 156, 170, 255, 255 43, 76, 113, 150, 184

Te
st

4

2 48, 125 46, 126 48, 125 48, 125 48, 125 47, 125

3 104, 132, 255 74, 138, 255 1, 56, 100 1, 56, 100 107, 135, 255 25, 83, 151

4 1, 100, 104, 255 1, 59, 108, 253 98, 141, 255, 255 107, 112, 194, 255 51, 105, 118, 255 53, 92, 140, 254

5 104, 132, 137, 255, 255 1, 17, 107, 128, 255 1, 1, 53, 57, 100 1, 4, 7, 61, 99 82, 103, 130, 251, 254 1, 7, 55, 82, 151

Te
st

5

2 90, 168 82, 164 90, 167 89, 169 90, 168 87, 166

3 1, 68, 97 1, 43, 99 1, 68, 98 1, 72, 94 90, 128, 255 30, 79, 150

4 1, 97, 98, 255 1, 96, 98, 255 1, 38, 79, 97 1, 43, 82, 97 1, 91, 94, 196 1, 57, 85, 130

5 1, 1, 68, 68, 97 1, 5, 97, 100, 253 1, 64, 101, 116, 255 1, 1, 70, 70, 95 1, 54, 105, 107, 232 1, 39, 91, 97, 194

Te
st

6

2 0.59534 3.7494 1.3487 0.80151 1.247 119, 177

3 16, 139, 154 16, 141, 156 16, 139, 154 16, 139, 154 16, 139, 154 16, 139, 154

4 16, 154, 154, 231 16, 133, 136, 174 16, 150, 160, 230 16, 16, 139, 155 17, 114, 139, 173 16, 87, 138, 167

5 16, 17, 139, 139, 154 16, 16, 90, 141, 143 16, 16, 141, 141, 153 16, 16, 138, 141, 155 22, 22, 115, 120, 129 16, 16, 122, 140, 150
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TABLE 45.8 The P-Value and Mean difference of the PSNR, SSIM, execution time, and Fitness values for the proposed
method.

Mean
difference

P-Value Algorithms Proposed
Method

Metric Mean
difference

P-Value Algorithms Proposed
Method

Metric

-0.2620 0.39 (*) HHO

MFWOA
execution

time

-117.3716 0.032 (*) HHO

MFWOA
Fitness
values

-181.8310 0.023 (*) EO -149.1045 0.048 (*) EO

11.6823 0.031 (*) WOA -135.0909 0.045 (*) WOA

0.7902 0.039 (*) MPA -194.0841 0.05 MPA

2.5068 0.046 (*) MFO -193.6614 0.05 MFO

0.0020 0.045 (*) HHO

MFWOA SSIM

0.0585 0.044 (*) HHO

MFWOA PSNR
0.0009 0.029 (*) EO 0.0306 0.038 (*) EO

0.0075 0.030 (*) WOA 0.3249 0.035 (*) WOA

0.0033 0.036 (*) MPA 0.2165 0.034 (*) MPA

0.0049 0.028 (*) MFO 0.3168 0.031 (*) MFO

Table 45.5. As the value of k increases, the obtained SSIM for all photos by all algorithms has an ascending/descending
trend. The value of SSIM does not increase with the increasing value of k. Instead, at some levels, the threshold decreases
and then rises again. In general, the value of SSIM and PSNR at higher threshold levels is much higher than at lower
threshold levels, but as the threshold levels increase, the values of PSNR and SSIM often fluctuate. For example, in this
chapter, the value of SSIM at the threshold level k = 32 is higher than the lower threshold levels. However, it can be seen
from Table 45.4 and Table 45.5 that the proposed MFWOA algorithm has better results than all other algorithms at all levels
of the lower, middle, and upper levels, and this is because according to the combination of the WOA and MFO algorithms.

This chapter considers each image separately as an optimization problem and a search space for each MH algorithm and
the proposed MFWOA method. The results in some cases may be different for each parameter, depending on the structure
of the respective MH algorithm. Table 45.6 shows the execution time for different algorithms over 100 runs. For all images,
WOA and EO have the minimum and maximum execution time at all threshold levels, respectively. Also, the execution time
of MFWOA is longer than WOA and less than MFO because the combination of WOA and MFO is used in the proposed
MFWOA method.

Inspecting the results in Table 45.6, EO is slower than other algorithms, and WOA is faster than other algorithms.
MFWOA is then faster than HHO, EO, MFO, and MPA. HHO is also faster than EO, MFO, and MPA. MPA is also quicker
than EO and MFO. MFO is also faster than EO. This difference is in the speed of operation of algorithms is the difference
in their structure and the use of special operators that each algorithm has used to achieve the final answer. For example,
the HHO has fewer parameters, low complexity, and high speed. MFO is also very accurate and is one of the efficient
algorithms. The parameters and operators in any MH algorithm will determine the degree of convergence and efficiency.
Early convergence may occur if these parameters and operators are not appropriately selected. WOA has a straightforward
structure, and fewer parameters are used in its design. WOA uses more straightforward operators. Therefore, it has less CC
and is faster. The EO algorithm is slow because it examines the various conditions to increase its performance and search
the search space locally and globally. MPA also has a relatively high CC due to its structure.

HHO, MFO, EO, MPA, and WOA have also made the best use of parameters and operators to achieve the best answer.
In any case, the proposed MFWOA algorithm has better performance in terms of SSIM and PSNR than the other five
compared algorithms, and this is because it uses a combination, which in this case also has the high capability. Some
algorithms take advantage of the exploration phase and the capacity of algorithms in the exploitation phase. Therefore,
using the combination of features of WOA and MFO algorithms in the proposed MFWOA method is the main factor of
MFWOA superiority over the compared algorithms. Table 45.8 shows the values of the obtained thresholds for the various
images obtained by each algorithm after 100 runs. Figs. 45.5 to 45.10 show the Thresholding images of “Test1”, “Test2”,
“Test3”, “Test4”, “Test5”, and “Test6” that obtained by all algorithms, respectively.

Table 45.8 shows the P-Value and mean value for the metrics of the Fitness Function, SSIM, PSNR, and execution time.
In particular, the P-Value indicates the probability of error in accepting the validity of the observed results, valid in the
sense that the experimental result well represents the community. For example, a P-Value of 0.05 indicates a 5% probability
that the relationship we observed in the sample is “accidental”. The lower the P-Value, the higher the accuracy of our work
and the lower the error rate. In this chapter, Hypothesis Zero assumes that there is no significant difference between the
mean values of the algorithms. However, the alternative hypothesis considers a considerable difference between them. The
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FIGURE 45.5 The Thresholding images of the “Test1” image obtained by all algorithms.

negative value difference in Table 45.8 indicates that the proposed algorithm performs worse than the compared algorithms
in terms of the relevant evaluation metric. However, considering that in our proposed method, the threshold values are
obtained by minimizing the Fitness Function, so the lower the value of the Fitness Function, the better the corresponding
algorithm. So, if the value difference value for the Fitness Function metric is negative, the relevant algorithm has better
performance than other algorithms. Also, the higher the mean difference per execution time for a negative algorithm, the
faster the corresponding algorithm and the shorter the execution time than other algorithms.

Considering the results in Table 45.8, considering that the proposed algorithm has a negative value for Fitness Function
values compared to different algorithms, the proposed algorithm is better than these algorithms in terms of evaluation metric
values of the Fitness Function. Wherever the P-Value difference of the proposed algorithm with other algorithms is less
than 0.05, it means that the performance of the proposed algorithm is generally better than the corresponding algorithms.
In 18 cases, the P-Value difference of the proposed method with other algorithms is less than 0.05 and is indicated by (*).
It shows a significant difference between the presented and compared algorithms, and the null hypothesis is incorrect.

Therefore, according to Table 45.8, the null hypothesis is rejected for 18 cases, and there is a significant difference
between the proposed algorithm and other algorithms. In all three cases, the P-Value is 0.05, meaning there is a 5% chance
that the relationship we observed in the sample is “accidental.” In this chapter, based on Table 45.8, the P-Value difference
of the proposed algorithm with other algorithms for SSIM is less than 0.05. Therefore, the null hypothesis for this metric
is not accepted, and this shows a significant difference between the proposed algorithm and other comparative algorithms
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FIGURE 45.6 The Thresholding images of the “Test2” image obtained by all algorithms.

for this metric (SSIM). Also, the difference between the P-Value of the proposed algorithm and the HHO, EO, and WOA
algorithms per Fitness values is less than 0.05. Therefore, hypothesis zero for this metric is not accepted. It shows a
significant difference between the proposed algorithm and the corresponding algorithms for this metric (Fitness values).
Also, for this metric, the value of the difference between the proposed method, MPA, and MFO algorithms is equal to 0.05.
It shows that 5% may be “accidental” in the sample for the proposed algorithm and MPA and MFO algorithms.

Table 45.8 also revealed the difference between the P-Value of the proposed algorithm and the EO, WOA, MFO, and
MPA algorithms per execution time is less than 0.05. Therefore, the zero hypotheses are rejected. It shows a significant
difference between the proposed algorithm and these algorithms for this metric. Also, the difference between the P-Value
of the proposed algorithm and the HHO algorithm per execution time metric is more than 0.05. Therefore, the alternative
hypothesis is rejected, which means a significant difference between the proposed algorithm and this algorithm. The dif-
ference in the P-Value for the proposed algorithm and other algorithms for PSNR is less than 0.05. Therefore, the zero
hypotheses are rejected. It shows a significant difference between the proposed algorithm and these algorithms for this
metric. It should be noted that the alternative hypothesis is accepted in this chapter, and it is argued that there is a sig-
nificant difference between the proposed algorithm and other algorithms. Because in most cases, the P-Value is less than
0.05. According to Table 45.9 and Table 45.10, the Mean value of the proposed MFWOA algorithm is positive with the
other algorithms against the PSNR, Fitness Function, execution time and SSIM evaluation metric. The MFWOA algorithm
performs better than the different algorithms. The mean difference value for both PSNR and SSIM evaluation metrics is
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FIGURE 45.7 The Thresholding images of the “Test3” image obtained by all algorithms.

negative, meaning that the MFWOA algorithm performs worse than other algorithms. For the Fitness Function evaluation
metric, given that we have used the minimization of this metric to obtain solutions, the lower the Fitness Function value
for each algorithm, it can be said that the relevant algorithm is more efficient than other algorithms. Of course, it should
be noted that in some cases, the value of the Fitness Function for MFWOA is slightly higher than different algorithms,
but the results of PSNR and SSIM for the proposed MFWOA algorithm are better than other algorithms. So, anywhere in
Table 45.9, the Mean difference is negative for the Fitness Function evaluation metric, meaning that the MFWOA algorithm
performs better. Also, considering that the lower the value of execution time, the higher the speed, so for this metric (exe-
cution time), the difference between the proposed algorithm and other algorithms is negative, i.e., the proposed algorithm
is faster than the algorithm has the desired.

As shown from Table 45.9, for the Fitness Function, for different images at different threshold levels, it has a positive
Mean difference value in 35 cases, indicating that the Fitness Function value for MFWOA is higher than other algorithms.
In 19 points, the value difference is zero, meaning that the value of the Fitness Function is the same for MFWOA and
the corresponding algorithm. In other cases, the value difference is negative. As shown from Table 45.9, for the PSNR
evaluation metric, the Mean difference value is negative in 5 cases, indicating that the PSNR value from the MFWOA is
lower than the other algorithms. In 16 points, the Mean difference value is equal to zero, indicating that the PSNR value of
the MFWOA is the same as the PSNR value of the other algorithms. In other cases, the mean difference value is positive,
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FIGURE 45.8 The Thresholding images of the “Test4” image obtained by all algorithms.

indicating the superiority of the proposed MFWOA algorithm over this metric (PSNR) is different from other algorithms.
In the SSIM evaluation metric, Table 45.10 evidently shows that the Mean difference value is negative in one case only,
indicating that the SSIM value obtained from MFWOA is less than the other algorithms. In one case, the Mean difference
value is equal to zero, indicating that the SSIM value from the MFWOA is the same as the SSIM value from the other
algorithms.

In other cases, the value difference is positive, indicating the superiority of the proposed MFWOA algorithm over
this metric (SSIM) is different from other algorithms. For the execution time evaluation metric, for all cases, the Mean
difference value of the two algorithms MFWOA and HHO for the Test1 and Test6 images is negative, indicating that the
execution time value obtained from the MFWOA is lower than the HHO. The speedup in the MFWOA is higher than
the HHO for the two corresponding images. The MFO is lower than other algorithms at those levels. In other cases, the
mean difference is positive, indicating that the proposed MFWOA algorithm for this metric (execution time) is slower
than different algorithms. In summary, the results of our experiments show that the use of MFWOA for MTIS is more
efficient than other algorithms. However, WOA, compared to MFO, showed promising results for a few thresholds, while
its performance is in most cases weaker than MFO (according to SSIM and PSNR results). It could be because the MFO
can switch between the exploration and operation phases, which are the two main phases in any MH algorithm. MFOs
better escape local optimization and early convergence and find more accurate answers to the problem. At the same time,
WOA is trapped in the local optimization in the early stages of optimization and cannot find optimal global solutions in the
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FIGURE 45.9 The Thresholding images of the “Test5” image obtained by all algorithms.
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FIGURE 45.10 The Thresholding images of the “Test6” image obtained by all algorithms.

search space. Thus, combining MFO with WOA helps improve WOA and, after merging with MFO, makes WOA more

capable of switching between exploration and operation phases and achieves better outputs. It should be noted that for all

values obtained in Tables 45.9 and 45.10, significant difference at level P-Value <0.05.
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TABLE 45.9 The Mean difference of the Fitness Function and PSNR values for the proposed method.

k PSNR Fitness Function

HHO EO WOA MPA MFO HHO EO WOA MPA MFO

Te
st

1

2 0.0040 0.0040 0.0060 0.0040 0.0040 0 0 -0.0001 0 0

3 1.1750 0.0480 0.5470 0.0480 0.0480 -0.0003 -0.0305 -0.0238 -0.0305 -0.0305

4 2.0190 0.4540 0.2540 4.3080 4.3080 0.0164 -0.1133 0.0150 -0.1255 -0.1255

5 1.6500 3.0890 0.0010 3.0890 0.5660 -0.0106 -0.0211 0.0019 -0.0366 -0.0107

6 0.2780 3.9530 4.4650 3.9530 3.9530 -0.2144 -0.1854 -0.1533 -0.1908 -0.1908

7 0.6260 7.2740 1.7810 7.2740 5.0320 -0.0276 -0.1366 -0.0435 -0.1889 -0.1109

8 0.1820 2.2340 5.0810 4.6690 2.2420 -0.0177 -0.0619 -0.0085 -0.1034 -0.0755

9 2.3320 1.5490 0.5820 1.5490 2.6880 -0.1088 -0.1319 -0.0742 -0.2011 -0.1689

10 0.0240 5.7590 2.1130 8.0020 3.1590 -0.0927 -1.2371 -0.7029 -1.3218 -0.7575

16 4.4100 0.0150 1.3360 3.6410 3.7760 -0.2853 -1.5251 0.0205 -1.6353 -1.6333

32 1.005 5.6990 11.2510 5.4190 1.3200 -2.2877 -4.8427 -1.8417 -4.1977 -3.5537

Te
st

2

2 0.0130 0.0130 0.0200 0.0130 0.0130 -0.0019 -0.0019 -0.0014 -0.0019 -0.0019

3 1.2540 1.2540 0.1100 1.2540 1.2540 -0.0781 -0.0781 0.0018 -0.0781 -0.0781

4 -0.3860 3.0200 3.0070 3.0200 3.0200 -0.0175 -0.2284 -0.2433 -0.2443 -0.2443

5 1.6670 1.4300 0.8470 1.4090 1.4300 -0.1339 -0.1486 -0.1322 -0.1695 -0.1695

6 3.5560 1.5740 0.0080 3.5890 3.5990 -0.0436 -0.3732 0.0069 -0.4250 -0.4209

7 1.6740 0.4650 2.7270 3.8640 0.4650 0.0183 -0.1776 0.3704 -0.1694 -0.0884

8 4.0400 3.2730 2.2250 4.1390 1.0100 -0.1286 -0.6394 -0.1508 -0.7195 -0.6362

9 2.0350 0.2050 1.5330 3.6500 0.0810 -0.0550 -0.7324 -0.7259 -0.7300 -0.4879

10 4.6560 3.3960 0.9150 3.2940 2.6930 -0.3603 -1.5982 -0.8984 -1.6427 -1.6405

16 5.0890 2.6860 5.9650 4.7240 0.0440 -0.2835 -2.6545 -1.1287 -2.7849 -2.5384

32 6.1060 1.7760 7.2120 0.4560 2.0110 -1.4720 -6.401 -2.076 -5.306 -4.475

Te
st

3

2 0 0 0.0130 0 0 -0.0010 -0.0010 -0.0006 -0.0010 -0.0010

3 0 0 0 0 0 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015

4 -0.0500 3.2570 0.0020 3.2570 3.2570 -0.1234 -0.3414 -0.1228 -0.4000 -0.4000

5 0.9030 2.9310 0.1110 2.9310 2.9310 -0.1579 -0.9373 -0.1571 -0.9373 -0.9373

6 -0.8900 0.8390 0.8720 0.8390 0.8390 0.0082 0.0045 -0.0086 -0.0245 -0.0244

7 2.1550 2.1810 0.0540 2.1810 2.9410 -0.8742 -0.8285 -0.0809 -0.8759 -0.3778

8 1.5300 0.1580 1.5830 0.1580 2.6850 -0.1905 -0.5574 -0.5380 -0.3487 -0.6238

9 0.1700 2.4020 0.3180 2.4020 2.4020 -0.2728 -1.1864 -0.5845 -1.4419 -1.4419

10 0.9810 2.3360 0.1270 2.3360 2.3360 -0.8171 -1.1333 -0.7264 -1.1712 -1.1711

16 1.5850 4.7490 4.7990 2.0750 2.0780 -1.5593 -2.8923 -1.3728 -2.4243 -2.4243

32 5.4820 4.7010 3.9510 3.4790 5.6650 -3.474 -7.9760 -3.255 -6.162 -8.326

Te
st

4

2 0.0140 0.0140 0.0240 0.0140 0.0140 -0.1021 -0.1021 -0.1013 -0.1021 -0.1021

3 0.5330 2.0320 2.2650 2.0320 2.0320 -0.1437 -0.2001 -0.1990 -0.2001 -0.2001

4 0.3510 4.0510 0.3960 4.0510 4.0510 -0.1259 -0.5656 -0.1217 -0.6008 -0.6008

5 1.8760 0.3940 0.6350 0.3930 0.4480 -0.1824 -0.2936 -0.3090 -0.3130 -0.2933

6 4.0330 2.4190 0.0010 2.4190 3.8080 -0.2430 -1.0715 -0.6036 -1.0661 -1.0983

7 0.0080 4.3940 4.0170 0.1110 4.3930 -0.0366 -1.2788 -1.5503 -1.0534 -1.5610

8 1.0730 0.5410 3.6000 2.5000 3.8890 -0.0715 -0.8469 -0.7937 -0.7809 -0.8453

9 2.6360 4.3750 3.7970 2.9780 4.3670 0.1933 -0.6587 0.0173 -0.8195 -0.8518

10 4.8620 1.2790 0.0080 3.9040 2.0850 -0.0294 -1.2147 -0.4932 -1.0883 -0.1527

16 2.1420 2.2210 4.9780 2.7780 5.0080 -0.7781 -2.7731 -0.1802 -2.9671 -1.7771

32 1.3100 2.7700 0.9950 2.4570 0.0090 -2.7300 -8.5360 -0.937 -7.692 -6.665
continued on next page
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TABLE 45.9 (continued)

k PSNR Fitness Function
HHO EO WOA MPA MFO HHO EO WOA MPA MFO

Te
st

5

2 0.0060 0.0060 0.0060 0.0100 0.0060 0 0 0 0 0
3 0.5130 0.2000 0.2000 0.2000 0.0800 -0.0001 0 0 0 0
4 0.3700 3.6160 0.0750 3.6160 3.6160 0.0040 -0.0483 -0.0100 -0.0524 0.0026
5 4.1370 3.1690 2.4920 3.1690 0.0520 -0.0377 -0.0362 -0.0434 -0.0454 -0.0022
6 2.0400 2.7190 0.0830 2.7360 2.7360 3.5918 3.4571 3.4720 3.4556 3.4547
7 0.6750 0.0700 3.2250 3.9620 0.0700 -0.0175 -0.1117 -0.1377 -0.1066 -0.0945
8 1.4070 1.5730 2.5280 4.4730 4.4560 -0.0537 -0.2730 -0.2652 -0.2919 -0.2919
9 0.4020 0.0560 0.3700 3.2110 2.8680 -0.1449 -0.1416 -0.1221 -0.1814 -0.1493
10 1.3330 1.0230 1.0110 0.8360 0.0610 -0.0126 -0.0235 0.0026 -0.0337 -0.0016
16 5.0180 1.9490 0.2620 0.1250 2.7140 -0.0590 -0.5429 -0.3375 -0.3637 -0.5184
32 8.7240 4.5170 9.6740 1.7760 1.7510 -0.0399 -0.5095 -0.0917 -0.4468 -0.0934

Te
st

6

2 0.0070 -0.0030 0 0.0070 0.0070 -0.0001 -0.0001 -0.0000 -0.0001 -0.0001
3 0.0140 0.0240 0.1850 0.0240 0.0240 0.0052 0.0003 0.0000 -0.0001 -0.0001
4 0.0650 3.1730 0.1250 3.1730 3.1730 -0.0001 -0.1985 -0.0000 -0.1985 -7.6985
5 2.5630 0.5110 0.0190 3.1570 0.4600 0.0048 -0.0029 0.0023 -0.0054 0.0005
6 0.4900 2.6490 1.4360 3.0350 3.0350 -0.0935 -0.2923 -0.1022 -0.3019 -0.3019
7 2.7620 4.5250 0.2170 4.5250 0.4190 -0.0871 -0.2222 -0.0941 -0.2950 -0.0924
8 0.0950 0.5270 1.7780 3.1970 3.1970 -0.0400 -0.0978 0.0080 -0.1020 -0.0020
9 2.3440 2.8910 3.3390 2.8910 0.0770 0.0052 -0.1496 -0.0053 -0.2086 -0.0065
10 0.3460 4.2910 1.4930 5.6290 1.7270 -0.0409 -0.1510 -0.0567 -0.3085 -0.1099
16 0.6390 1.7800 -0.0730 3.5420 0.0970 -0.0249 -0.3581 -0.0734 -0.6221 0.0017
32 3.758 2.2010 0.7650 0.0220 0.2250 -0.2349 -1.6868 0.0086 -1.4301 -0.2725

TABLE 45.10 The Mean difference of the SSIM and execution time for the proposed method.

k SSIM Fitness Function
HHO EO WOA MPA MFO HHO EO WOA MPA MFO

Te
st

3

2 0.0007 0.0007 0.0007 0.0007 0.0007 -1.8325 0.0007 0.0007 0.0007 0.0007
3 0.0212 0.0009 0.0194 0.0009 0.0009 -5.1671 0.0009 0.0194 0.0009 0.0009
4 0.0584 0.0113 0.0010 0.1506 0.1506 -6.0070 0.0113 0.0010 0.1506 0.1506
5 0.0601 0.1018 0.0034 0.1018 0.0114 -6.6552 0.1018 0.0034 0.1018 0.0114
6 0 0.1164 0.1148 0.1164 0.1164 -7.4688 0.1164 0.1148 0.1164 0.1164
7 0.0028 0.2153 0.0085 0.2153 0.1244 -16.3971 0.2153 0.0085 0.2153 0.1244
8 0.0056 0.0476 0.1194 0.1365 0.0502 -20.0317 0.0476 0.1194 0.1365 0.0502
9 0.0814 0.0528 0.0016 0.0528 0.0745 -26.1704 0.0528 0.0016 0.0528 0.0745
10 0.0037 0.1632 0.0369 0.2540 0.0684 -11.3673 0.1632 0.0369 0.2540 0.0684
16 0.1608 -0.0019 0.0360 0.1343 0.1406 -15.5009 -0.0019 0.0360 0.1343 0.1406
32 0.0242 0.1107 0.3270 0.1045 0.0274 -25.2787 0.1107 0.3270 0.1045 0.0274

Te
st

4

2 0.0013 0.0013 0.0106 0.0013 0.0013 0.0013 0.0013 0.0106 0.0013 0.0013
3 0.0001 0.0001 0.0177 0.0001 0.0001 0.0001 0.0001 0.0177 0.0001 0.0001
4 0.0058 0.0877 0.0877 0.0877 0.0877 0.0058 0.0877 0.0877 0.0877 0.0877
5 0.0060 0.0159 0.0007 0.0146 0.0159 0.0060 0.0159 0.0007 0.0146 0.0159
6 0.0334 0.0366 0.0000 0.0379 0.0405 0.0334 0.0366 0.0000 0.0379 0.0405
7 0.0723 0.0224 0.0787 0.0726 0.0224 0.0723 0.0224 0.0787 0.0726 0.0224
8 0.0327 0.0791 0.0339 0.0523 0.0305 0.0327 0.0791 0.0339 0.0523 0.0305
9 0.0110 0.0068 0.0516 0.0583 0.0150 0.0110 0.0068 0.0516 0.0583 0.0150
10 0.0301 0.0643 0.0005 0.0416 0.0378 0.0301 0.0643 0.0005 0.0416 0.0378
16 0.0726 0.0768 0.1083 0.0799 0.0004 0.0726 0.0768 0.1083 0.0799 0.0004
32 0.0616 0.0014 0.1244 0.0200 0.0178 0.0616 0.0013 0.1244 0.0200 0.0178

continued on next page
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TABLE 45.10 (continued)

k SSIM Fitness Function

HHO EO WOA MPA MFO HHO EO WOA MPA MFO

Te
st

5

2 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0050 0.0718 0.0045 0.0718 0.0718 0.0050 0.0718 0.0045 0.0718 0.0718

5 0.0194 0.0538 0.0033 0.0538 0.0538 0.0194 0.0538 0.0033 0.0538 0.0538

6 0.0071 0.0376 0.0372 0.0376 0.0376 0.0071 0.0376 0.0372 0.0376 0.0376

7 0.0348 0.0358 0.0013 0.0358 0.0539 0.0348 0.0358 0.0013 0.0358 0.0539

8 0.0474 0.0069 0.0364 0.0069 0.0362 0.0474 0.0069 0.0364 0.0069 0.0362

9 0.0008 0.0417 0.0211 0.0417 0.0417 0.0008 0.0417 0.0211 0.0417 0.0417

10 0.0360 0.0527 0.0009 0.0527 0.0527 0.0360 0.0527 0.0009 0.0527 0.0527

16 0.0037 0.0707 0.0722 0.0141 0.0143 0.0037 0.0707 0.0722 0.0141 0.0143

32 0.0764 0.0550 0.0789 0.0414 0.0786 0.0764 0.0550 0.0789 0.0414 0.0786

Te
st

6

2 0.0038 0.0038 0.0050 0.0038 0.0038 0.0038 0.0038 0.0050 0.0038 0.0038

3 0.0038 0.0195 0.0259 0.0195 0.0195 0.0038 0.0195 0.0259 0.0195 0.0195

4 0.0053 0.0727 0.0094 0.0727 0.0727 0.0053 0.0727 0.0094 0.0727 0.0727

5 0.0357 -0.0008 0.0086 -0.0007 0.0006 0.0357 -0.0008 0.0086 -0.0007 0.0006

6 0.0724 0.0633 0.0031 0.0633 0.0725 0.0724 0.0633 0.0031 0.0633 0.0725

7 0.0028 0.1296 0.1078 0.0254 0.1296 0.0028 0.1296 0.1078 0.0254 0.1296

8 0.0031 0.0200 0.0532 0.0651 0.0743 0.0031 0.0200 0.0532 0.0651 0.0743

9 0.0589 0.0975 0.0688 0.0868 0.0959 0.0589 0.0975 0.0688 0.0868 0.0959

10 0.0727 0.0384 0.0039 0.1000 0.0636 0.0727 0.0384 0.0039 0.1000 0.0636

16 0.0017 0.0397 0.0652 0.0590 0.0660 0.0017 0.0397 0.0652 0.0590 0.0660

32 0.0037 0.0801 0.0215 0.0603 0.0302 0.0027 0.0801 0.0215 0.0603 0.0302

Te
st

7

2 0.0000 0.0000 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000

3 0.0238 0.0100 0.0100 0.0100 0.0055 0.0238 0.0100 0.0100 0.0100 0.0055

4 0.0105 0.1856 0.0010 0.1856 0.1856 0.0105 0.1856 0.0010 0.1856 0.1856

5 0.2413 0.1796 0.1441 0.1796 0.0007 0.2413 0.1796 0.1441 0.1796 0.0007

6 -0.0303 0.1336 -0.0068 0.1364 0.1364 -0.0303 0.1336 -0.0068 0.1364 0.1364

7 0.0447 0.0042 0.1874 0.2229 0.0042 0.0447 0.0042 0.1874 0.2229 0.0042

8 0.0012 0.0534 0.1131 0.2257 0.2229 0.0012 0.0534 0.1131 0.2257 0.2229

9 0.0022 0.0016 0.0487 0.1848 0.1735 0.0022 0.0016 0.0487 0.1848 0.1735

10 0.0007 0.0807 0.0902 0.0740 0.0201 0.0007 0.0807 0.0902 0.0740 0.0201

16 0.0682 0.0487 0.0011 0.0021 0.0822 0.0682 0.0487 0.0011 0.0021 0.0822

32 0.3552 0.1182 0.4228 0.0328 0.0382 0.3553 0.1182 0.4228 0.0328 0.0382

Te
st

8

2 0.0002 0.0002 0.0006 0.0002 0.0002 -1.9699 0.0002 0.0006 0.0002 0.0002

3 0.0003 0.0507 0.0561 0.0507 0.0507 -5.6698 0.0507 0.0561 0.0507 0.0507

4 0.0006 0.0991 0.0044 0.0991 0.0991 -6.4689 0.0991 0.0044 0.0991 0.0991

5 0.0465 0.0103 0.0010 0.1039 0.0060 -21.1737 0.0103 0.0010 0.1039 0.0060

6 0.0015 0.0590 0.0445 0.1048 0.1048 -27.9872 0.0590 0.0445 0.1048 0.1048

7 0.0556 0.1393 0.0009 0.1393 0.0023 -20.9375 0.1393 0.0009 0.1393 0.0023

8 0.0022 0.0050 0.0473 0.1020 0.1020 -10.4139 0.0050 0.0473 0.1020 0.1020

9 0.0451 0.1024 0.1114 0.1024 0.0014 -12.1925 0.1024 0.1114 0.1024 0.0014

10 0.0070 0.1769 0.1146 0.2128 0.0880 -12.5260 0.1769 0.1146 0.2128 0.0880

16 0.0203 0.1090 0.0724 0.1926 0.0006 -23.0742 0.1090 0.0724 0.1926 0.0006

32 0.0626 0.0557 0.0393 0.0307 0.0367 -47.6932 0.0557 0.0393 0.0307 0.0267
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45.6 Conclusions
In this chapter, the problem of determining the optimal thresholds in a MTIS was considered as an optimization problem.
So, a combination of WOA and MFO was used to improve the performance of WOA to solve the problem of MTIS that
uses the Fitness Function minimization. Inverse Otsu was also employed as a Fitness Function in the MFWOA algorithm
and other MH algorithms. The experimental results of the proposed MFWOA algorithm were compared with MPA, WOA,
HHO, MFO, and EO algorithm on the eight different images using PSNR, SSIM, execution time, and Fitness Function
evaluation metric. The results demonstrated that the MFWOA algorithm is better for all images regarding PSNR and SSIM
than other algorithms. However, in terms of execution time, MFWOA seemed a little slower. Therefore, our proposed
MFWOA algorithm performed better than other algorithms regarding PSNR, SSIM, segmentation time, and segmentation
accuracy on the tested images. But in terms of execution time evaluation metric, the MFWOA algorithm is faster than WOA
and slower than MFO. In some cases, the proposed algorithm was faster than other algorithms. Our next work is to use a
combination of the WOA and the Artificial Neural Network (ANN) to improve the WOA as well as the MTIS problem as
an optimization problem.
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